A multi - material lattice gas automata model for diffusion and chemical reaction 擴(kuò)散和化學(xué)反應(yīng)的多物質(zhì)格子氣自動(dòng)機(jī)模型
Non - linear dynamical systems and chaotic phenomena . random processes and diffusion . ising model and lattice gas . quantum systems and electronic structures . percolation , fractal and self - similarity . neural network and genetic algorithm 非線性動(dòng)力系統(tǒng)與混沌現(xiàn)象、隨機(jī)過程和擴(kuò)散現(xiàn)象、易幸模型與格子氣體的統(tǒng)計(jì)模擬、量子系統(tǒng)與電子結(jié)構(gòu)、展透、碎形與自我類似、類神經(jīng)網(wǎng)路與基因演算法。
Lattice bgk ( lbgk ) method is a very novel numerical method . it develops on the basis of the lattice gas automaton . the successful simulations of fluid flow by the lbgk method have demonstrated its wide applications in the computational fluid dynamics Latticebgk ,簡(jiǎn)稱lbgk ,是一種非常新穎的數(shù)值計(jì)算方法,它在格子氣( latticegasautomaton ,簡(jiǎn)稱lga )的基礎(chǔ)上發(fā)展而來,并已在計(jì)算流體力學(xué)中得到廣泛的應(yīng)用,它可以用來模擬各種流動(dòng)現(xiàn)象。
For the ten years of late , the cellular automata has made the new progress in hydy nimiee dynamices . by gaining the moment equations from lattice boltzmann equation and using chapman - enskog expansion , the fluid dynamices equation and energy equation of 13 - bit lattice gas automata model with polyvelocity have been deduced . the validity of the model using for non - isothermal fluid dynamics has been proved 近十年來,細(xì)胞自動(dòng)機(jī)已在流體力學(xué)的研究中取得了進(jìn)展,應(yīng)用13 - bit多速格子氣自動(dòng)機(jī)模型,在由格子boltzmann方程求得矩方程的基礎(chǔ)上,根據(jù)chapman - enskog展開方法,導(dǎo)出了該模型的宏觀熱流體力學(xué)方程,從理論上證明了所建模型對(duì)熱流體力學(xué)問題描述的正確性。